A novel LS-SVMs hyper-parameter selection based on particle swarm optimization

نویسندگان

  • X. C. Guo
  • J. H. Yang
  • C. G. Wu
  • C. Y. Wang
  • Y. C. Liang
چکیده

The selection of hyper-parameters plays an important role to the performance of least-squares support vector machines (LS-SVMs). In this paper, a novel hyper-parameter selection method for LS-SVMs is presented based on the particle swarm optimization (PSO). The proposed method does not need any priori knowledge on the analytic property of the generalization performance measure and can be used to determine multiple hyper-parameters at the same time. The feasibility of this method is examined on benchmark data sets. Different kinds of kernel families are investigated by using the proposed method. Experimental results show that the best or quasi-best test performance could be obtained by using the scaling radial basis kernel function (SRBF) and RBF kernel functions, respectively. & 2008 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

تعیین ماشین‌های بردار پشتیبان بهینه در طبقه‌بندی تصاویر فرا طیفی بر مبنای الگوریتم ژنتیک

Hyper spectral remote sensing imagery, due to its rich source of spectral information provides an efficient tool for ground classifications in complex geographical areas with similar classes. Referring to robustness of Support Vector Machines (SVMs) in high dimensional space, they are efficient tool for classification of hyper spectral imagery. However, there are two optimization issues which s...

متن کامل

An Improved QPSO Algorithm for Parameters Optimization of LS-SVM

Aiming at the parameter optimization of least square support vector machine (LS-SVM), an improved quantum-behaved particle swarm optimization (IQPSO) algorithm for LS-SVM parameter selection was proposed. Based on QPSO, the algorithm optimizes particle initializing positions and improves solving speed and precision by sampling and linearizing methods. IQPSO LSSVM model was test by test function...

متن کامل

Stock Price Prediction using Machine Learning and Swarm Intelligence

Background and Objectives: Stock price prediction has become one of the interesting and also challenging topics for researchers in the past few years. Due to the non-linear nature of the time-series data of the stock prices, mathematical modeling approaches usually fail to yield acceptable results. Therefore, machine learning methods can be a promising solution to this problem. Methods: In this...

متن کامل

Fuzzy particle swarm optimization with nearest-better neighborhood for multimodal optimization

In the last decades, many efforts have been made to solve multimodal optimization problems using Particle Swarm Optimization (PSO). To produce good results, these PSO algorithms need to specify some niching parameters to define the local neighborhood. In this paper, our motivation is to propose the novel neighborhood structures that remove undesirable niching parameters without sacrificing perf...

متن کامل

A Hybrid Model for Short-Term Load Forecasting Based on Non- Parametric Error Correction

In this paper, we presented the performance of forecasting model and error correction will affect the accuracy of short-term load forecasting. Least squares support vector machines (LS-SVM) based on improved particle swarm optimization is selected as load forecasting model. Forecasting accuracy and generalization performance of LS-SVM depend on selection of its parameters greatly. Adaptive part...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neurocomputing

دوره 71  شماره 

صفحات  -

تاریخ انتشار 2008